The writer of the above circulating tumor cells study is now recruiting patients for a trial in Brazil:
Another method to isolate circulating sarcoma cells using the ApoStream system is presented here (2 patients with synovial sarcoma in this study):
Circulating tumor cells (CTCs) are increasingly employed for research and clinical monitoring of cancer, though most current methods do not permit the isolation of non-epithelial tumor cells. Furthermore, CTCs isolated with antibody-dependent methods...
John Hopkins University is using CellSieve™ microfiltration system to find circulating tumor cells:
M Hayashi, P Zhu, G McCarty, CF Meyer, CA Pratilas, A Levin, CD Morris, CM Albert, KW Jackson, CM Tang and DM Loeb,
Oncotarget , Oct 2017 03
Metastatic disease is the most important factor in determining the survival of sarcoma patients. Since sarcoma metastasis is predominantly hematogenous, we hypothesized that detection and quantification of circulating tumor cells (CTCs) could reflect response to therapy and risk of metastatic relapse. We evaluated the presence of CTCs using a novel animal model and in the blood of patients with high grade sarcomas utilizing the CellSieve™ size-based low pressure microfiltration system. Sarcoma CTCs were identified based on antibody staining patterns and nuclear morphology. Additionally, RNA was extracted from the CTCs for molecular analysis including demonstration of an EWS-FLI1 translocation, identification of a previously unrecognized p53 mutation in a patient with Ewing sarcoma, and single cell RNA sequencing of CTC from a child with alveolar rhabdomyosarcoma. In mouse xenograft models, the presence of CTC correlates with disease burden and with clinically silent metastases. In human patients, CTCs were readily detected at diagnosis, decreased with successful treatment, and were detectable in the blood of patients with no radiographic evidence of disease prior to the development of overt metastasis. Although evaluation of CTC is established in the care of patients with carcinomas, this technology has yet to be effectively applied to the evaluation and treatment of sarcoma patients. Our work demonstrates that the CellSieve™ microfiltration system can be used to study the biology of CTC in both mouse models and human sarcoma patients, with the potential for application to the monitoring of disease response and prediction of metastatic relapse.
A Japanese study suggests monitoring synovial sarcoma by checking blood expression levels of microRNA-92b-3p:
K Uotani, T Fujiwara, A Yoshida, S Iwata, T Morita, M Kiyono, S Yokoo, T Kunisada, K Takeda, J Hasei, K Numoto, Y Nezu, T Yonemoto, T Ishii, A Kawai, T Ochiya and T Ozaki,
Scientific reports , Nov 2017 07
The lack of useful biomarkers is a crucial problem for patients with soft tissue sarcomas (STSs). Emerging evidence has suggested that circulating microRNAs (miRNAs) in body fluids have novel impact as biomarkers for patients with malignant diseases, but their significance in synovial sarcoma (SS) patients remains unknown. Initial global miRNA screening using SS patient serum and SS cell culture media identified a signature of four upregulated miRNAs. Among these candidates, miR-92b-3p secretion from SS cells was confirmed, which was embedded within tumour-derived exosomes rather than argonaute-2. Animal experiments revealed a close correlation between serum miR-92b-3p levels and tumour dynamics. Clinical relevance was validated in two independent clinical cohorts, and we subsequently identified that serum miR-92b-3p levels were significantly higher in SS patients in comparison to that in healthy individuals. Moreover, serum miR-92b-3p was robust in discriminating patients with SS from the other STS patients and reflected tumour burden in SS patients. Overall, liquid biopsy using serum miR-92b-3p expression levels may represent a novel approach for monitoring tumour dynamics of SS.